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Abstract 

Breathing rate (BR) is a vital physiological parameter 
increasingly used for patient monitoring. Traditional BR 
sensors are often unsuitable for wearable or dense ECG 
applications. We evaluated the spatial robustness of an 
open-source algorithm for BR estimation from single-lead 
ECG using a high-density dataset from 40 healthy adults 
with a 118-electrode thoracic array. Unlike previous 
studies, we assessed performance not only per electrode 
but also for all possible electrode pairs, considering one 
electrode as a fixed reference. BR was estimated for each 
pair and compared to a plethysmographic reference. When 
the reference electrode is positioned in the upper central 
thorax, pairing with electrodes located diagonally or 
laterally to the left consistently yields the lowest median 
Mean Absolute Error (1.82 [1.45-2.28] bpm). Conversely, 
pairings toward the right or inferior right thorax tend to 
degrade performance. These findings demonstrate that 
both electrode location and pairing geometry strongly 
influence BR estimation accuracy, suggesting that 
optimized asymmetric placement could enhance 
performance in wearable systems. 
 
1. Introduction 

Breathing rate (BR) is a fundamental vital sign, 
routinely measured in clinical practice to assess patient 
status and detect early signs of deterioration. Despite its 
clinical relevance, BR is often measured sporadically 
rather than continuously, mainly due to limitations in 
existing monitoring technologies. Conventional systems 
such as respiratory belts, nasal thermistors, or impedance 
pneumography can be cumbersome, intrusive, or 
susceptible to motion artefacts, making them less suitable 
for long-term or ambulatory use. 

In recent years, algorithms capable of estimating BR 
from electrocardiogram (ECG) signals have emerged as an 

attractive alternative. ECG-derived respiration (EDR) 
leverages subtle respiratory-related modulations in the 
ECG signal, such as baseline wander, QRS axis rotation, 
and amplitude changes, to estimate BR without requiring 
additional sensors. This approach offers a contact-based, 
unobtrusive alternative that is well suited for wearable 
monitoring. Among these, Kulkarni et al. introduced an 
open-source, single-lead ECG algorithm that combines 
time- and frequency-domain processing [1]. This method 
demonstrated promising accuracy in both human and 
animal studies, highlighting its potential for wearable 
applications. 

In wearable or high-density ECG systems, electrode 
placement may be dictated by device requirement or 
patient-specific constraints, potentially affecting the 
strength of respiratory modulation and, consequently, BR 
estimation accuracy. While some studies have examined 
optimal electrode locations for general ECG quality or 
cardiac parameter extraction, the spatial robustness of 
EDR algorithms, i.e., their ability to maintain accuracy 
across varying electrode positions, remains underexplored. 
That is, most prior work has focused on single or limited 
electrode configurations, often corresponding to standard 
12-lead ECG positions due to constraints in data 
collection/availability. 

In this study, we investigate the spatial robustness of the 
Kulkarni et al. single-lead EDR algorithm using high-
density (128 electrode) ECG recordings from healthy 
adults [1]. Such a dense electrode array provides a unique 
opportunity to map spatial variability, enabling a detailed 
assessment of how electrode position influences EDR 
performance. We quantify BR estimation accuracy across 
all electrode positions and pairings, compare spatial 
patterns to known optimal ECG locations, and analyze the 
influence of inter-electrode distance and orientation on 
performance. This knowledge is essential for guiding 
electrode placement in future wearable devices, where 
optimizing both signal quality and respiratory sensitivity 
could significantly improve monitoring reliability. 
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2. Methods 

ECG data were collected from 40 healthy adult 
volunteers (age 45 ± 16.4 years, 54% male). The study was 
approved by local ethics committee and all volunteers gave 
informed consent. A 128-electrode BioSemi system was 
used with electrodes covering the chest (Figure 1). The 
single electrode band positioned near the spine has not 
been used. Signals were sampled at 2048 Hz and pre-
processed with a Butterworth band-pass filter (0.5–250 
Hz) and a 50 Hz notch filter to remove noise and baseline 
wander. Ground-truth respiratory signals were 
simultaneously acquired using a plethysmography belt 
connected to the same BioSemi acquisition system. The 
raw respiratory signal was further processed with 
NeuroKit2’s rsp_clean function to remove artifacts, and 
respiratory peaks (inspiration onsets) were detected using 
rsp_findpeaks. Instantaneous BR was then computed from 
consecutive inter-peak intervals as 

𝐵𝑅[𝑛] =
60 × 𝑓𝑠

𝑅𝑆𝑃_	𝑃𝑒𝑎𝑘𝑠[𝑛 + 1] − 𝑅𝑆𝑃_𝑃𝑒𝑎𝑘𝑠[𝑛] 

where fs=2048 Hz is the sampling frequency and 
RSP_Peaks are the detected inspiration indices. This 
produced a breath-by-breath series of BR.  

BR was estimated from each electrode’s ECG signal 
using a Python-based open-source algorithm developed for 
BR estimation from single-lead ECG signals and described 
in detailed in [1]. In brief, the algorithm computes the root 
mean square (RMS) amplitude of each QRS complex in a 
moving 16-beat window, and then applies a fast Fourier 
transform to the RMS signal to extract the dominant 
respiratory frequency. This method combines time- and 
frequency-domain features to estimate BR. 

 
Figure 1: BioSemi 128-electrode thoracic array with 
example single-lead ECG (red) and reference respiratory 
signal (green).  

The algorithm was applied to 13,806 bipolar signals per 
volunteer, obtained by pairing each reference electrode 
(118 in total) with the remaining 117 electrodes on the 
BioSemi grid. 

Estimated and reference BR were compared using the 
mean absolute error (MAE) in breaths per minute (bpm) 

for each volunteers’ recordings (10 ± 2 mins each) and for 
each bipole. Spatial analysis of MAE values was 
performed to assess the robustness of the algorithm across 
different electrode positions. Comparisons were made 
between traditional precordial regions and alternative 
locations, such as the right lateral thorax. Results are 
reported as median and interquartile range [Q1-Q3]. 

 
3. Results 

3.1. Impact of Relative Orientation on BR 
Estimation Accuracy  

 
Figure 2: Median MAE maps for BR estimation. Each map 
shows median error for one reference electrode (black) 
paired with all others over all the patients. Standard 
precordial positions (V1–V6) are highlighted in red. 

The spatial distribution of median MAE values across 
all patients demonstrated a clear dependence on electrode 
orientation. For reference electrodes located in the upper 
or central thorax, pairings with electrodes oriented to the 
right and inferior-right consistently produced lower MAE 
values (≈ 2.0 bpm, dark blue), while pairings toward the 
left yielded substantially higher errors (up to ≈ 4.5 bpm, 
red). This directional pattern was reproducible across 
different reference electrodes, as illustrated in Figure 2, 
where the reference electrode is shown in black and the 
standard precordial leads V1–V6 in yellow. 

Quantitative analysis of angle and distance confirmed 
these observations. Figure 3.A and B show that median 
MAE values varied significantly with electrode pair 
orientation: lefttward orientations (0°–90° and 270°–360°) 
yielded lower errors (median MAE = 1.82 [1.45-2.28] 
bpm) than rightward orientations (90°–270°; median MAE 
= 2.4 [1.9-3] bpm, p < 0.0001). No significant difference 
was respectively observed between downward (270°–
360°, 180°–270°) and upward (0°–90°, 90°–180°) 
orientations, although slightly lower values were generally 
found around 0°–90°. The polar representation confirmed 
these angular trends, with minimal MAE values 
concentrated in the right and inferior-right quadrants of the 
reference electrode.  

Figure 3.C shows the variation of median MAE as a 
function of electrode separation distance, for left-sided 
(green) and right-sided (orange) pairings. 
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Figure 3: BR estimation accuracy as a function of electrode 
pair geometry. A. Polar map of MAE by angle and 
distance. B. Violin plots of median MAE across angular 
sectors. C. Median MAE versus inter-electrode distance. 
**** p < 0.0001. 

In both cases, MAE decreased sharply within the first 
6–9 cm. Beyond this range, performance tended to 
stabilize, but the trend differed between sides: for right-
sided pairings, MAE reached a stable level after ~6 cm and 
showed little further change, while for left-sided pairings, 
MAE continued to decrease more gradually. At greater 
distances, the error stabilised, although the most distant 
points were less reliable due to the reduced number of 
electrode pairs. 

3.2.  Identification of High-Performance 
Electrode Regions 

The mean of median MAE values across all patients for 
each reference electrode is shown in Figure 4.A. 
Performance varied across the thorax, with the lowest 
values concentrated in the central–upper regions (≈1.21–
1.79 bpm), particularly in areas 2 and 6. 

 
Figure 4: Spatial distribution of mean and minimum 
median MAE values per reference electrode. (A) Mean of 
median MAE values across all patients. The electrode grid 
is divided into predefined anatomical areas (1–12). (B) 
Minimum of median MAE values across all patients.  

In contrast, higher errors were observed in the inferior 
and lateral left zone, with mean median MAE values 
reaching up to 3.29 bpm (area 12). 

The minimum of median MAE values for each 
reference electrode (Figure 4.B) further highlighted these 
trends. Several electrodes in the upper and central thorax 
achieved minimum median MAE values close to 1.0 bpm, 
while even the least favorable electrodes rarely exceeded 
1.7 bpm. This confirms that although overall performance 
depends on electrode location, all regions of the thorax 
were capable of providing accurate estimates under 
optimal pairings. 

The heatmap (Figure 5.A) shows the mean of median 
MAE values between all combinations of reference and 
paired zones. Performance was not uniform across the 
thorax. The lowest errors were consistently observed when 
electrodes from area 2 were used as reference and paired 
with area 3 (1.24 bpm). In contrast, higher errors occurred 
when involving areas 7, 8, 9, 10, or 12, with mean median 
MAE values exceeding 4 bpm in several cases (e.g., area 
7–area 1: 4.33 bpm; area 12–area 12: 4.56 bpm). 

 
Figure 5: Comparison of median MAE across electrode 
area. (A) MAE values for BR estimation across all patients, 
computed between reference electrodes and paired 
electrodes grouped by anatomical areas. (B) Distribution 
of mean median MAE values for each area. Statistics: 
Friedman test. *p<0.05, ***p<0.001. 

The distribution of mean median MAE values per area 
(Figure 5.B) further highlights these differences. Areas 2 
and 6 yielded the most accurate and stable results ( ≈ 1.5–
2.3 bpm), significantly outperforming inferior and lateral 
zones such as areas 8, 9, 10, and 12, where errors often 
exceeded 3 bpm (p < 0.05, **p < 0.001). 

 
4. Discussion 

This study investigated the spatial robustness of an 
open-source EDR algorithm applied to high-density 
thoracic recordings. Our results highlight that both 
electrode and reference location and the relative 
orientations play a crucial role in BR estimation accuracy. 
We demonstrated that the overall performance of the 
algorithm was satisfactory across the torso. However, large 
spatial variations were observed. Reference electrodes 
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located in the upper-central thorax, above precordial leads 
V1–V4, yielded the lowest median MAE values, while 
inferior and left-lateral regions performed substantially 
worse. These findings are consistent with previous work 
on optimized ECG electrode positioning for signal quality 
[2], and indicate that the upper-central thorax provides the 
most favorable geometry for capturing respiratory-related 
ECG modulation. 

When evaluating all possible electrode pairs, relative 
orientation emerged as the dominant factor. Pairings on the 
right side of the thorax and in the inferior-right quadrant 
consistently minimized MAE while left-sided pairings 
produced significantly higher errors. No significant 
difference was observed between upward and downward 
orientations, although slightly better values were found in 
the 0°–90° sector. In contrast, inter-electrode distance had 
a limited effect: performance improved rapidly within the 
first 6–9 cm of separation, and showed little further change 
beyond this range. 

The zone-based analysis (Figure 5) confirmed the 
existence of high-performance electrode regions. The 
upper-central thorax, used as the reference electrode area 
consistently outperformed all other regions and showed 
higher robustness to pair orientation. In contrast, zones 
located inferiorly or laterally (areas 8–12) produced the 
highest errors, and were more sensitive to orientation. 
Notably, the best-performance was obtained by pairing 
areas 2 and 3, corresponding to electrodes located above 
V1-V2 and V3-V4. 

Mechanistically, the spatial asymmetry can be 
explained by several interacting factors. In regions with 
low MAE, respiratory modulation of QRS amplitude is 
strong, producing clear oscillations in the RMS signal and 
a dominant respiratory peak in the frequency spectrum. In 
the areas with high MAE, the modulation is weaker, and 
the respiratory peak may be overshadowed by noise or 
motion artefacts. Despite data selection based on signal 
quality, it was not possible to fully control for subject 
movements or speech during recordings, which may also 
have contributed to spurious peaks and degraded accuracy 
[3-4]. In addition, the algorithm is highly sensitive to R-
peak detection: small errors or inconsistencies in detecting 
R-peaks directly affect QRS segmentation and RMS 
computation, which in turn propagate to the spectral 
analysis stage. We also observed that the polarity of the 
bipolar lead appeared to influence this method, suggesting 
that lead orientation and sign convention can further 
impact the robustness of BR estimation. Together, these 
factors explain why some electrode regions yield 
consistently more reliable estimates than others. 

These findings have practical implications for wearable 
device design. Traditional used precordial positions, while 
optimized for cardiac diagnosis, are not necessarily ideal 
for EDR monitoring. Instead, our results suggest 
positioning the reference electrode in the upper-central 
thorax and with an electrode on the left or inferior-left 

thorax will maximize BR accuracy. Such asymmetric, 
geometry-driven placement strategies could enhance 
robustness in ambulatory monitoring, where electrode 
positioning is often constrained. 

 
5.  Conclusion 

This study confirms the feasibility of single-lead ECG-
based BR estimation using a high-density electrode layout. 
It reveals that the performance of the algorithm by 
Kulkarni et al. is spatially dependent, with some regions 
offering more reliable estimates than others. These insights 
are relevant for the design of future wearable BR monitors 
and argue for careful electrode placement beyond 
traditional ECG configurations. 
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